Tilting in module categories
نویسنده
چکیده
Let M be a module over an associative ring R and σ[M ] the category of M -subgenerated modules. Generalizing the notion of a projective generator in σ[M ], a module P ∈ σ[M ] is called tilting in σ[M ] if (i) P is projective in the category of P -generated modules, (ii) every P -generated module is P presented, and (iii) σ[P ] = σ[M ]. We call P self-tilting if it is tilting in σ[P ]. Examples of (not self-small) tilting modules are I Q/ZZ in the category of torsion ZZ-modules, I Q⊕ I Q/ZZ in the category ZZ-Mod, certain divisible modules over integral domains, and also cohereditary coalgebras C over a QF-ring in the category of comodules over C. Self-small tilting modules P in σ[M ] are finitely presented in σ[M ]. For M = P , they are just the ∗-modules introduced by C. Menini and A. Orsatti, and for M = R, they are the usual tilting modules considered in representation theory. Notice that our techniques and most of our results also apply to locally finitely generated Grothendieck categories.
منابع مشابه
Equivalences Induced by Infinitely Generated Tilting Modules
We generalize Brenner and Butler’s Theorem as well as Happel’s Theorem on the equivalences induced by a finitely generated tilting module over Artin algebras, to the case of an infinitely generated tilting module over an arbitrary associative ring establishing the equivalences induced between subcategories of module categories and also at the level of derived categories.
متن کاملCluster-Tilting Theory
Tilting theory provides a good method for comparing two categories, such as module categories of finite-dimensional algebras. For an introduction, see e.g. [A]. BGP reflection functors [BGP] give a way of comparing the representation categories of two quivers, where one is obtained from the other by reversing all of the arrows incident with a sink or source. Auslander, Platzeck and Reiten [APR]...
متن کامل2 3 M ay 2 00 7 From triangulated categories to abelian categories – cluster tilting in a general framework
A general framework for cluster tilting is set up by showing that any quotient of a triangulated category modulo a tilting subcategory (that is, a maximal oneorthogonal subcategory) carries an induced abelian structure. These abelian quotients turn out to be module categories of Gorenstein algebras of dimension at most one.
متن کامل0 Fe b 20 07 From triangulated categories to abelian categories – cluster tilting in a general framework Steffen
A general framework for cluster tilting is set up by showing that any quotient of a triangulated category modulo a tilting subcategory (that is, a maximal oneorthogonal subcategory) carries an induced abelian structure. These abelian quotients turn out to be module categories of Gorenstein algebras of dimension at most one.
متن کاملConstructing Tilting Modules
We investigate the structure of (infinite dimensional) tilting modules over hereditary artin algebras. For connected algebras of infinite representation type with Grothendieck group of rank n, we prove that for each 0 ≤ i < n− 1, there is an infinite dimensional tilting module Ti with exactly i pairwise non-isomorphic indecomposable finite dimensional direct summands. We also show that any ston...
متن کامل